Migrate from Python API V1 to V2
Version V1 of the Data Commons Python API will be deprecated in early 2026. The V2 APIs are significantly different from V1. This document summarizes the important differences that you should be aware of and provides examples of translating queries from V1 to V2.
Summary of changes
| Feature | V1 | V2 |
|---|---|---|
| API key | Not required | Required: get from https://apikeys.datacommons.com |
| Custom Data Commons supported | No | Yes: see details in Create a client |
| Pandas support | Separate package | Module in the same package: see details in Install |
| Sessions | Managed by the datacommons package object |
Managed by a datacommons_client object that you must create: see details in Create a client |
| Classes/methods | 7 methods, members of datacommons class |
3 classes representing REST endpoints node, observation and resolve; several member functions for each endpoint class. Variations of methods in V1 are represented as function parameters in V2. See Request endpoints and responses |
| Pandas classes/methods | 3 methods, all members of datacommons_pandas class |
1 method, member of datacommons_client class. Variations of the Pandas methods in V1 are represented as parameters in V2. See Observations DataFrame |
| Pagination | Required for queries resulting in large data volumes | Optional: see Pagination |
| DCID lookup method | No | Yes: resolve endpoint methods |
| Statistical facets | With the get_stat_value and get_stat_series methods, Data Commons chooses the most “relevant” facet to answer the query; typically this is the facet that has the most recent data. |
For all Observation methods, results from all available facets are returned by default (if you don”t apply a filter); for details, see Observation response |
| Statistical facet filtering | The get_stat_value, get_stat_series and Pandas build_time_series methods allow you to filter results by specific facet fields, such as measurement method, unit, observation period, etc. |
The observations_dataframe method allows you to filter results by specific facet fields. Observation methods only allow filtering results by the facet domain or ID; for details, see Observation fetch. |
| Response contents | Simple structures mostly containing values only | Nested structures containing values and additional properties and metadata |
| Different response formats | No | Yes: for details, see Response formatting. |
V1 function equivalences in V2
This section shows you how to translate from a given V1 function to the equivalent code in V2. Examples of both versions are given in the Examples section.
datacommmons V1 function |
V2 equivalent |
|---|---|
get_triples |
No direct equivalent; triples are not returned. Instead you indicate the directionality of the relationship in the triple, i.e. incoming or outgoing edges, using node.fetch and a relation expression |
get_places_in |
node.fetch_place_descendants |
get_stat_value |
observation.fetch_observations_by_entity_dcid with a single place and variable |
get_stat_series |
observation.fetch_observations_by_entity_dcid with a single place and variable, and the date parameter set to all |
get_stat_all |
observation.fetch_observations_by_entity_dcid with an array of places and/or variables and date parameter set to all |
get_property_labels |
node.fetch_property_labels |
get_property_values |
node.fetch_property_values |
datacommons_pandas V1 function |
V2 equivalent |
|---|---|
build_time_series |
observations_dataframe with a single place and variable and the date parameter set to all |
build_time_series_dataframe |
observations_dataframe with an array of places, a single variable and the date parameter set to all |
build_multivariate_dataframe |
observations_dataframe with an array of places and/or variables and the date parameter set to latest |
Examples
datacommons package examples
The following examples show equivalent API requests and responses using the V1 datacommons package and V2.
Example 1: Get triples associated with a single place
This example retrieves triples associated with zip code 94043. In V1, the get_triples method returns all triples, in which the zip code is the subject or the object. In V2, you cannot get both directions in a single request; you must send one request for the outgoing relationships and one for the incoming relationships.
-
datacommons.get_triples(["zip/94043"]) -
Request 1:
client.node.fetch(node_dcids=["zip/94043"], expression="->*")Request 2:
client.node.fetch(node_dcids=["zip/94043"], expression="<-*")
-
{ "zip/94043": [ // Outgoing relations ("zip/94043", "containedInPlace", "country/USA"), ("zip/94043", "containedInPlace", "geoId/06085"), ("zip/94043", "containedInPlace", "geoId/0608592830"), ("zip/94043", "containedInPlace", "geoId/0616"), ("zip/94043", "geoId", "zip/94043"), //... ("zip/94043", "landArea", "SquareMeter21906343"), ("zip/94043", "latitude", "37.411913"), ("zip/94043", "longitude", "-122.068919"), ("zip/94043", "name", "94043"), ("zip/94043", "provenance", "dc/base/BaseGeos"), ("zip/94043", "typeOf", "CensusZipCodeTabulationArea"), ("zip/94043", "usCensusGeoId", "860Z200US94043"), ("zip/94043", "waterArea", "SquareMeter0"), // Incoming relations ("EpaParentCompany/AlphabetInc", "locatedIn", "zip/94043"), ("EpaParentCompany/Google", "locatedIn", "zip/94043"), ("epaGhgrpFacilityId/1005910", "containedInPlace", "zip/94043"), ("epaSuperfundSiteId/CA2170090078", "containedInPlace", "zip/94043"), ("epaSuperfundSiteId/CAD009111444", "containedInPlace", "zip/94043"), ("epaSuperfundSiteId/CAD009138488", "containedInPlace", "zip/94043"), ("epaSuperfundSiteId/CAD009205097", "containedInPlace", "zip/94043"), ("epaSuperfundSiteId/CAD009212838", "containedInPlace", "zip/94043"), ("epaSuperfundSiteId/CAD061620217", "containedInPlace", "zip/94043"), ("epaSuperfundSiteId/CAD095989778", "containedInPlace", "zip/94043"), //... ] } -
Response 1 (outgoing relations):
{"data": {"zip/94043": {"arcs": { "longitude": {"nodes": [{"provenanceId": "dc/base/BaseGeos", "value": "-122.068919"}]}, "name": {"nodes": [{"provenanceId": "dc/base/BaseGeos", "value": "94043"}]}, "typeOf": {"nodes": [{"dcid": "CensusZipCodeTabulationArea", "name": "CensusZipCodeTabulationArea", "provenanceId": "dc/base/BaseGeos", "types": ["Class"]}]}, "usCensusGeoId": {"nodes": [{"provenanceId": "dc/base/BaseGeos", "value": "860Z200US94043"}]}, "containedInPlace": {"nodes": [{"dcid": "country/USA", "name": "United States", "provenanceId": "dc/base/BaseGeos", "types": ["Country"]}, {"dcid": "geoId/06085", "name": "Santa Clara County", "provenanceId": "dc/base/BaseGeos", "types": ["AdministrativeArea2", "County"]}, {"dcid": "geoId/0608592830", "name": "San Jose CCD", "provenanceId": "dc/base/BaseGeos", "types": ["CensusCountyDivision"]}, {"dcid": "geoId/0616", "name": "Congressional District 16 (113th Congress), California", "provenanceId": "dc/base/BaseGeos", "types": ["CongressionalDistrict"]}]}, //... "geoOverlaps": {"nodes": [{"dcid": "geoId/06085504601", "name": "Census Tract 5046.01, Santa Clara County, California", "provenanceId": "dc/base/BaseGeos", "types": ["CensusTract"]}, {"dcid": "geoId/06085504700", "name": "Census Tract 5047, Santa Clara County, California", "provenanceId": "dc/base/BaseGeos", "types": ["CensusTract"]}, {"dcid": "geoId/06085509108", "name": "Census Tract 5091.08, Santa Clara County, California", "provenanceId": "dc/base/BaseGeos", "types": ["CensusTract"]}, //... "landArea": {"nodes": [{"dcid": "SquareMeter21906343", "name": "SquareMeter 21906343", "provenanceId": "dc/base/BaseGeos", "types": ["Quantity"]}]}, "latitude": {"nodes": [{"provenanceId": "dc/base/BaseGeos", "value": "37.411913"}]}, "provenance": {"nodes": [{"dcid": "dc/base/BaseGeos", "name": "BaseGeos", "provenanceId": "dc/base/BaseGeos", "types": ["Provenance"]}]}}}}}Response 2 (incoming relations):
{"data": {"zip/94043": {"arcs": { "locatedIn": {"nodes": [ {"dcid": "EpaParentCompany/AlphabetInc", "name": "AlphabetInc", "provenanceId": "dc/base/EPA_ParentCompanies", "types": ["EpaParentCompany"]}, {"dcid": "EpaParentCompany/Google", "name": "Google", "provenanceId": "dc/base/EPA_ParentCompanies", "types": ["EpaParentCompany"]}]}, "containedInPlace": {"nodes": [ {"dcid": "epaGhgrpFacilityId/1005910", "name": "City Of Mountain View (Shoreline Landfill)", "provenanceId": "dc/base/EPA_GHGRPFacilities", "types": ["EpaReportingFacility"]}, {"dcid": "epaSuperfundSiteId/CA2170090078", "name": "Moffett Naval Air Station", "provenanceId": "dc/base/EPA_Superfund_Sites", "types": ["SuperfundSite"]}, {"dcid": "epaSuperfundSiteId/CAD009111444", "name": "Teledyne Semiconductor", "provenanceId": "dc/base/EPA_Superfund_Sites", "types": ["SuperfundSite"]}, {"dcid": "epaSuperfundSiteId/CAD009138488", "name": "Spectra-Physics Inc.", "provenanceId": "dc/base/EPA_Superfund_Sites", "types": ["SuperfundSite"]}, //... ] } } }
Example 2: Get a list of places in another place
This example retrieves a list of counties in the U.S. state of Delaware.
-
datacommons.get_places_in(["geoId/10"], "County") -
client.node.fetch_place_children(place_dcids="geoId/10", children_type="County")
-
{"geoId/10": ["geoId/10001", "geoId/10003", "geoId/10005"]} -
{"geoId/10": [ {"dcid": "geoId/10001", "name": "Kent County"}, {"dcid": "geoId/10003", "name": "New Castle County"}, {"dcid": "geoId/10005", "name": "Sussex County"}]}
Example 3: Get the latest value of a single statistical variable for a single place
This example gets the latest count of men in the state of California. Note that the V1 method get_stat_value returns a single value, automatically selecting the most “relevant” data source, while the V2 method returns all data sources (“facets”), i.e. multiple values for the same variable, as well as metadata for all the sources. Comparing the results, you can see that the V1 method has selected facet 3999249536, which has the most recent date, and comes from the U.S. Census PEP survey.
-
datacommons.get_stat_value("geoId/05", "Count_Person_Male") -
client.observation.fetch_observations_by_entity_dcid(date="latest", entity_dcids="geoId/05", variable_dcids="Count_Person_Male")
-
1524533 -
{"byVariable": {"Count_Person_Male": {"byEntity": {"geoId/05": {"orderedFacets": [ {"earliestDate": "2023", "facetId": "1145703171", "latestDate": "2023", "obsCount": 1, "observations": [{"date": "2023", "value": 1495958.0}]}, {"earliestDate": "2024", "facetId": "3999249536", "latestDate": "2024", "obsCount": 1, "observations": [{"date": "2024", "value": 1524533.0}]}, {"earliestDate": "2023", "facetId": "1964317807", "latestDate": "2023", "obsCount": 1, "observations": [{"date": "2023", "value": 1495958.0}]}, {"earliestDate": "2023", "facetId": "10983471", "latestDate": "2023", "obsCount": 1, "observations": [{"date": "2023", "value": 1495096.943}]}, {"earliestDate": "2023", "facetId": "196790193", "latestDate": "2023", "obsCount": 1, "observations": [{"date": "2023", "value": 1495096.943}]}, {"earliestDate": "2021", "facetId": "4181918134", "latestDate": "2021", "obsCount": 1, "observations": [{"date": "2021", "value": 1493178.0}]}, {"earliestDate": "2020", "facetId": "2825511676", "latestDate": "2020", "obsCount": 1, "observations": [{"date": "2020", "value": 1486856.0}]}, {"earliestDate": "2019", "facetId": "1226172227", "latestDate": "2019", "obsCount": 1, "observations": [{"date": "2019", "value": 1474705.0}]}]}}}}, "facets": {"2825511676": {"importName": "CDC_Mortality_UnderlyingCause", "provenanceUrl": "https://wonder.cdc.gov/ucd-icd10.html"}, "1226172227": {"importName": "CensusACS1YearSurvey", "measurementMethod": "CensusACS1yrSurvey", "provenanceUrl": "https://www.census.gov/programs-surveys/acs/data/data-via-ftp.html"}, "1145703171": {"importName": "CensusACS5YearSurvey", "measurementMethod": "CensusACS5yrSurvey", "provenanceUrl": "https://www.census.gov/programs-surveys/acs/data/data-via-ftp.html"}, "3999249536": {"importName": "USCensusPEP_Sex", "measurementMethod": "CensusPEPSurvey_PartialAggregate", "observationPeriod": "P1Y", "provenanceUrl": "https://www.census.gov/programs-surveys/popest.html"}, "1964317807": {"importName": "CensusACS5YearSurvey_SubjectTables_S0101", "measurementMethod": "CensusACS5yrSurveySubjectTable", "provenanceUrl": "https://data.census.gov/table?q=S0101:+Age+and+Sex&tid=ACSST1Y2022.S0101"}, "10983471": {"importName": "CensusACS5YearSurvey_SubjectTables_S2601A", "measurementMethod": "CensusACS5yrSurveySubjectTable", "provenanceUrl": "https://data.census.gov/cedsci/table?q=S2601A&tid=ACSST5Y2019.S2601A"}, "196790193": {"importName": "CensusACS5YearSurvey_SubjectTables_S2602", "measurementMethod": "CensusACS5yrSurveySubjectTable", "provenanceUrl": "https://data.census.gov/cedsci/table?q=S2602&tid=ACSST5Y2019.S2602"}, "4181918134": {"importName": "OECDRegionalDemography_Population", "measurementMethod": "OECDRegionalStatistics", "observationPeriod": "P1Y", "provenanceUrl": "https://data-explorer.oecd.org/vis?fs[0]=Topic%2C0%7CRegional%252C%20rural%20and%20urban%20development%23GEO%23&pg=40&fc=Topic&bp=true&snb=117&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_REG_DEMO%40DF_POP_5Y&df[ag]=OECD.CFE.EDS&df[vs]=2.0&dq=A.......&to[TIME_PERIOD]=false&vw=tb&pd=%2C"}}}
Example 4: Get all values of a single statistical variable for a single place
This example retrieves the number of men in the state of California for all years available. As in example 3 above, V1 returns data from a single facet (which appears to be 1145703171, the U.S. Census ACS 5-year survey). V2 returns data for all available facets.
-
datacommons.get_stat_series("geoId/05", "Count_Person_Male") -
client.observation.fetch_observations_by_entity_dcid(date="all", entity_dcids="geoId/05", variable_dcids="Count_Person_Male")
-
{"2023": 1495958, "2017": 1461651, "2022": 1491622, "2015": 1451913, "2021": 1483520, "2018": 1468412, "2011": 1421287, "2016": 1456694, "2012": 1431252, "2019": 1471760, "2013": 1439862, "2014": 1447235, "2020": 1478511} -
{"byVariable": {"Count_Person_Male": {"byEntity": {"geoId/05": {"orderedFacets": [ {"earliestDate": "2011", "facetId": "1145703171", "latestDate": "2023", "obsCount": 13, "observations": [ {"date": "2011", "value": 1421287.0}, {"date": "2012", "value": 1431252.0}, {"date": "2013", "value": 1439862.0}, {"date": "2014", "value": 1447235.0}, {"date": "2015", "value": 1451913.0}, {"date": "2016", "value": 1456694.0}, {"date": "2017", "value": 1461651.0}, {"date": "2018", "value": 1468412.0}, {"date": "2019", "value": 1471760.0}, {"date": "2020", "value": 1478511.0}, {"date": "2021", "value": 1483520.0}, {"date": "2022", "value": 1491622.0}, {"date": "2023", "value": 1495958.0}]}, {"earliestDate": "1970", "facetId": "3999249536", "latestDate": "2024", "obsCount": 55, "observations": [ {"date": "1970", "value": 937034.0}, {"date": "1971", "value": 956802.0}, {"date": "1972", "value": 979822.0}, {"date": "1973", "value": 999264.0}, {"date": "1974", "value": 1019259.0}, {"date": "1975", "value": 1047112.0}, {"date": "1976", "value": 1051166.0}, {"date": "1977", "value": 1069003.0}, {"date": "1978", "value": 1084374.0}, {"date": "1979", "value": 1097123.0}, {"date": "1980", "value": 1105739.0}, {"date": "1981", "value": 1107249.0}, {"date": "1982", "value": 1107142.0}, {"date": "1983", "value": 1112460.0}, {"date": "1984", "value": 1119061.0}, {"date": "1985", "value": 1122425.0}, {"date": "1986", "value": 1124357.0}, {"date": "1987", "value": 1129353.0}, {"date": "1988", "value": 1129014.0}, {"date": "1989", "value": 1130916.0}, {"date": "1990", "value": 1136163.0}, //... "facets": {"1964317807": {"importName": "CensusACS5YearSurvey_SubjectTables_S0101", "measurementMethod": "CensusACS5yrSurveySubjectTable", "provenanceUrl": "https://data.census.gov/table?q=S0101:+Age+and+Sex&tid=ACSST1Y2022.S0101"}, "10983471": {"importName": "CensusACS5YearSurvey_SubjectTables_S2601A", "measurementMethod": "CensusACS5yrSurveySubjectTable", "provenanceUrl": "https://data.census.gov/cedsci/table?q=S2601A&tid=ACSST5Y2019.S2601A"}, "196790193": {"importName": "CensusACS5YearSurvey_SubjectTables_S2602", "measurementMethod": "CensusACS5yrSurveySubjectTable", "provenanceUrl": "https://data.census.gov/cedsci/table?q=S2602&tid=ACSST5Y2019.S2602"}, //... }}
Example 5: Get the all values of a single statistical variable for a single place, selecting the facet to return
This example gets the nominal GDP for Italy, filtering for facets that show the results in U.S. dollars. In V1, this is done directly with the unit parameter. In V2, using the Observation endpoint, we use the domain representing the facet whose unit is U.S. dollars. Note that you may need to make two requests with the Observation APIs before applying a filter: one to get the IDs and attributes of all the facets and identify the one you want, and a second one to apply the appropriate filter to get the desired facet.
-
datacommons.get_stat_series("country/ITA", "Amount_EconomicActivity_GrossDomesticProduction_Nominal", unit="USDollar") -
client.observation.fetch_observations_by_entity_dcid(date="all", entity_dcids="country/ITA",variable_dcids="Amount_EconomicActivity_GrossDomesticProduction_Nominal", filter_facet_domains="worldbank.org")
-
{'2003': 1582930016538.82, '2002': 1281746271196.04, '1961': 46649487320.4225, '1986': 641862313287.44, '1974': 200024444775.231, '2000': 1149661363439.38, '2015': 1845428048839.1, '2001': 1172041488805.87, '1966': 76622444787.3696, '1971': 124959712858.92598, '1999': 1255004736463.98, //... '1979': 394584507107.9, '2016': 1887111188176.93, '1981': 431695533980.583, '2024': 2372774547793.12, '1985': 453259761687.456, '1975': 228220643534.994, '1960': 42012422612.3955, '1991': 1249092439519.28} -
{'byVariable': {'Amount_EconomicActivity_GrossDomesticProduction_Nominal': {'byEntity': {'country/ITA': {'orderedFacets': [{'earliestDate': '1960', 'facetId': '3496587042', 'latestDate': '2024', 'obsCount': 65, 'observations': [{'date': '1960', 'value': 42012422612.3955}, {'date': '1961', 'value': 46649487320.4225}, {'date': '1962', 'value': 52413872628.0045}, {'date': '1963', 'value': 60035924617.9277}, {'date': '1964', 'value': 65720771779.4768}, {'date': '1965', 'value': 70717012186.1774}, {'date': '1966', 'value': 76622444787.3696}, {'date': '1967', 'value': 84401995573.2456}, {'date': '1968', 'value': 91485448147.84}, {'date': '1969', 'value': 100996667239.335}, ..// {'date': '2022', 'value': 2104067630319.46}, {'date': '2023', 'value': 2304605139862.79}, {'date': '2024', 'value': 2372774547793.12}]}]}}}}, 'facets': {'3496587042': {'importName': 'WorldDevelopmentIndicators', 'observationPeriod': 'P1Y', 'provenanceUrl': 'https://datacatalog.worldbank.org/dataset/world-development-indicators/', 'unit': 'USDollar'}}}
Example 6: Get all values of a single statistical variables for multiple places
This example retrieves the number of people with doctoral degrees in the states of Minnesota and Wisconsin for all years available. Note that the get_stat_all method behaves more like V2 and returns data for all facets (in this case, there is only one), as well as metadata for all facets.
-
datacommons.get_stat_all(["geoId/27","geoId/55"], ["Count_Person_EducationalAttainmentDoctorateDegree"]) -
client.observation.fetch_observations_by_entity_dcid(date="all", variable_dcids="Count_Person_EducationalAttainmentDoctorateDegree", entity_dcids=["geoId/27","geoId/55"])
-
{"geoId/27": {"Count_Person_EducationalAttainmentDoctorateDegree": {"sourceSeries": [ {"val": {"2016": 50039, "2017": 52737, "2015": 47323, "2013": 42511, "2012": 40961, "2022": 60300, "2023": 63794, "2014": 44713, "2021": 58452, "2019": 55185, "2020": 56170, "2018": 54303}, "measurementMethod": "CensusACS5yrSurvey", "importName": "CensusACS5YearSurvey", "provenanceDomain": "census.gov", "provenanceUrl": "https://www.census.gov/programs-surveys/acs/data/data-via-ftp.html"}]}}, "geoId/55": {"Count_Person_EducationalAttainmentDoctorateDegree": {"sourceSeries": [ {"val": {"2020": 49385, "2017": 43737, "2022": 53667, "2014": 40133, "2021": 52306, "2023": 55286, "2016": 42590, "2012": 38052, "2013": 38711, "2019": 47496, "2018": 46071, "2015": 41387}, "measurementMethod": "CensusACS5yrSurvey", "importName": "CensusACS5YearSurvey", "provenanceDomain": "census.gov", "provenanceUrl": "https://www.census.gov/programs-surveys/acs/data/data-via-ftp.html"}]}}} -
{"byVariable": {"Count_Person_EducationalAttainmentDoctorateDegree": {"byEntity": { "geoId/55": {"orderedFacets": [{"earliestDate": "2012", "facetId": "1145703171", "latestDate": "2023", "obsCount": 12, "observations": [ {"date": "2012", "value": 38052.0}, {"date": "2013", "value": 38711.0}, {"date": "2014", "value": 40133.0}, {"date": "2015", "value": 41387.0}, {"date": "2016", "value": 42590.0}, {"date": "2017", "value": 43737.0}, {"date": "2018", "value": 46071.0}, {"date": "2019", "value": 47496.0}, {"date": "2020", "value": 49385.0}, {"date": "2021", "value": 52306.0}, {"date": "2022", "value": 53667.0}, {"date": "2023", "value": 55286.0}]}]}, "geoId/27": {"orderedFacets": [{"earliestDate": "2012", "facetId": "1145703171", "latestDate": "2023", "obsCount": 12, "observations": [ {"date": "2012", "value": 40961.0}, {"date": "2013", "value": 42511.0}, {"date": "2014", "value": 44713.0}, {"date": "2015", "value": 47323.0}, {"date": "2016", "value": 50039.0}, {"date": "2017", "value": 52737.0}, {"date": "2018", "value": 54303.0}, {"date": "2019", "value": 55185.0}, {"date": "2020", "value": 56170.0}, {"date": "2021", "value": 58452.0}, {"date": "2022", "value": 60300.0}, {"date": "2023", "value": 63794.0}]}]}}}}, "facets": {"1145703171": {"importName": "CensusACS5YearSurvey", "measurementMethod": "CensusACS5yrSurvey", "provenanceUrl": "https://www.census.gov/programs-surveys/acs/data/data-via-ftp.html"}}}
Example 7: Get all values of multiple statistical variables for a single place
This example retrieves the total population as well as the male population of the state of Arkansas for all available years.
-
datacommons.get_stat_all(["geoId/05"], ["Count_Person", "Count_Person_Male"]) -
client.observation.fetch_observations_by_entity_dcid(date="all", entity_dcids="geoId/05", variable_dcids=["Count_Person","Count_Person_Male"])
-
{"geoId/05": {"Count_Person": {"sourceSeries": [{"val": { "2019": 3020985, "1936": 1892000, "2013": 2960459, "1980": 2286435, "1904": 1419000, "2023": 3069463, "2010": 2921998, "1946": 1797000, "1967": 1901000, "1902": 1360000, "1962": 1853000, "1993": 2423743, "1991": 2370666, "1986": 2331984, "2009": 2896843, "2014": 2968759, "1933": 1854000, "1954": 1734000, "1921": 1769000, "1929": 1852000, "1956": 1704000, "1949": 1844000, //... "measurementMethod": "CensusPEPSurvey", "observationPeriod": "P1Y", "importName": "USCensusPEP_Annual_Population", "provenanceDomain": "census.gov", "provenanceUrl": "https://www.census.gov/programs-surveys/popest.html"}, {"val": { "2022": 3018669, "2018": 2990671, "2020": 3011873, "2016": 2968472, "2013": 2933369, "2019": 2999370, "2021": 3006309, "2015": 2958208, "2011": 2895928, "2023": 3032651, "2014": 2947036, "2012": 2916372, "2017": 2977944}, "measurementMethod": "CensusACS5yrSurvey", "importName": "CensusACS5YearSurvey", "provenanceDomain": "census.gov", "provenanceUrl": "https://www.census.gov/programs-surveys/acs/data/data-via-ftp.html"}, {"val": {"2000": 2673400, "2020": 3011524, "2010": 2915918}, "measurementMethod": "USDecennialCensus", "importName": "USDecennialCensus_RedistrictingRelease", "provenanceDomain": "census.gov", "provenanceUrl": "https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html"}, //... "Count_Person_Male": {"sourceSeries": [{"val": { "2015": 1451913, "2021": 1483520, "2020": 1478511, "2023": 1495958, "2016": 1456694, "2022": 1491622, "2019": 1471760, "2013": 1439862, "2018": 1468412, "2014": 1447235, "2011": 1421287, "2012": 1431252, "2017": 1461651}, "measurementMethod": "CensusACS5yrSurvey", "importName": "CensusACS5YearSurvey", "provenanceDomain": "census.gov", "provenanceUrl": "https://www.census.gov/programs-surveys/acs/data/data-via-ftp.html"}, {"val": { "1975": 1047112, "1995": 1228626, "2023": 1513837, "1991": 1150369, "2019": 1482909, "1990": 1136163, "1998": 1277869, "1989": 1130916, "2011": 1444411, "2021": 1495032, "2013": 1453888, "1992": 1167203, "2004": 1346638, "2022": 1503494, "1982": 1107142, "1978": 1084374, //... "measurementMethod": "CensusPEPSurvey_PartialAggregate", "observationPeriod": "P1Y", "importName": "USCensusPEP_Sex", "provenanceDomain": "census.gov", "isDcAggregate": True, "provenanceUrl": "https://www.census.gov/programs-surveys/popest.html"}, {"val": {"2013": 1439862, "2018": 1468412, "2011": 1421287, "2015": 1451913, "2020": 1478511, "2017": 1461651, "2021": 1483520, "2019": 1471760, "2014": 1447235, "2012": 1431252, "2010": 1408945, "2022": 1491622, "2023": 1495958, "2016": 1456694}, "measurementMethod": "CensusACS5yrSurveySubjectTable", "importName": "CensusACS5YearSurvey_SubjectTables_S0101", "provenanceDomain": "census.gov", "provenanceUrl": "https://data.census.gov/table?q=S0101:+Age+and+Sex&tid=ACSST1Y2022.S0101"}, //... ]}}} -
{"byVariable": {"Count_Person": {"byEntity": { "geoId/05": {"orderedFacets": [ {"earliestDate": "1900", "facetId": "2176550201", "latestDate": "2024", "obsCount": 125, "observations": [{"date": "1900", "value": 1314000.0}, {"date": "1901", "value": 1341000.0}, {"date": "1902", "value": 1360000.0}, {"date": "1903", "value": 1384000.0}, {"date": "1904", "value": 1419000.0}, {"date": "1905", "value": 1447000.0}, {"date": "1906", "value": 1465000.0}, {"date": "1907", "value": 1484000.0}, //... {"earliestDate": "2011", "facetId": "1145703171", "latestDate": "2023", "obsCount": 13, "observations": [{"date": "2011", "value": 2895928.0}, {"date": "2012", "value": 2916372.0}, {"date": "2013", "value": 2933369.0}, {"date": "2014", "value": 2947036.0}, {"date": "2015", "value": 2958208.0}, {"date": "2016", "value": 2968472.0}, {"date": "2017", "value": 2977944.0}, {"date": "2018", "value": 2990671.0}, {"date": "2019", "value": 2999370.0}, {"date": "2020", "value": 3011873.0}, {"date": "2021", "value": 3006309.0}, {"date": "2022", "value": 3018669.0}, {"date": "2023", "value": 3032651.0}]}, {"earliestDate": "2000", "facetId": "1541763368", "latestDate": "2020", "obsCount": 3, "observations": [{"date": "2000", "value": 2673400.0}, {"date": "2010", "value": 2915918.0}, {"date": "2020", "value": 3011524.0}]}, //... "Count_Person_Male": {"byEntity": { "geoId/05": {"orderedFacets": [{"earliestDate": "2011", "facetId": "1145703171", "latestDate": "2023", "obsCount": 13, "observations": [{"date": "2011", "value": 1421287.0}, {"date": "2012", "value": 1431252.0}, {"date": "2013", "value": 1439862.0}, {"date": "2014", "value": 1447235.0}, {"date": "2015", "value": 1451913.0}, {"date": "2016", "value": 1456694.0}, {"date": "2017", "value": 1461651.0}, {"date": "2018", "value": 1468412.0}, {"date": "2019", "value": 1471760.0}, {"date": "2020", "value": 1478511.0}, {"date": "2021", "value": 1483520.0}, {"date": "2022", "value": 1491622.0}, {"date": "2023", "value": 1495958.0}]}, {"earliestDate": "1970", "facetId": "3999249536", "latestDate": "2024", "obsCount": 55, "observations": [{"date": "1970", "value": 937034.0}, {"date": "1971", "value": 956802.0}, {"date": "1972", "value": 979822.0}, {"date": "1973", "value": 999264.0}, {"date": "1974", "value": 1019259.0}, {"date": "1975", "value": 1047112.0}, {"date": "1976", "value": 1051166.0}, {"date": "1977", "value": 1069003.0}, {"date": "1978", "value": 1084374.0}, {"date": "1979", "value": 1097123.0}, {"date": "1980", "value": 1105739.0}, //... {"earliestDate": "2010", "facetId": "1964317807", "latestDate": "2023", "obsCount": 14, "observations": [{"date": "2010", "value": 1408945.0}, {"date": "2011", "value": 1421287.0}, {"date": "2012", "value": 1431252.0}, {"date": "2013", "value": 1439862.0}, {"date": "2014", "value": 1447235.0}, {"date": "2015", "value": 1451913.0}, {"date": "2016", "value": 1456694.0}, {"date": "2017", "value": 1461651.0}, //... {"earliestDate": "2010", "facetId": "10983471", "latestDate": "2023", "obsCount": 14, "observations": [{"date": "2010", "value": 1407615.16}, {"date": "2011", "value": 1421900.648}, {"date": "2012", "value": 1431938.652}, {"date": "2013", "value": 1440284.179}, {"date": "2014", "value": 1446994.676}, {"date": "2015", "value": 1452480.128}, {"date": "2016", "value": 1457519.752}, {"date": "2017", "value": 1462170.504}, //... {"earliestDate": "2017", "facetId": "196790193", "latestDate": "2023", "obsCount": 7, "observations": [{"date": "2017", "value": 1462170.504}, {"date": "2018", "value": 1468419.461}, {"date": "2019", "value": 1472690.67}, {"date": "2020", "value": 1478829.643}, {"date": "2021", "value": 1482110.337}, {"date": "2022", "value": 1491222.486}, {"date": "2023", "value": 1495096.943}]}, //... "facets": {"10983471": {"importName": "CensusACS5YearSurvey_SubjectTables_S2601A", "measurementMethod": "CensusACS5yrSurveySubjectTable", "provenanceUrl": "https://data.census.gov/cedsci/table?q=S2601A&tid=ACSST5Y2019.S2601A"}, "2176550201": {"importName": "USCensusPEP_Annual_Population", "measurementMethod": "CensusPEPSurvey", "observationPeriod": "P1Y", "provenanceUrl": "https://www.census.gov/programs-surveys/popest.html"}, "196790193": {"importName": "CensusACS5YearSurvey_SubjectTables_S2602", "measurementMethod": "CensusACS5yrSurveySubjectTable", "provenanceUrl": "https://data.census.gov/cedsci/table?q=S2602&tid=ACSST5Y2019.S2602"}, //... }}
Example 8: Get all outgoing property labels for a single node
This example retrieves the outwardly directed property labels (but not the values) of Wisconsin”s eighth congressional district.
-
datacommons.get_property_labels(["geoId/5508"]) -
client.node.fetch_property_labels(node_dcids="geoId/5508")
-
{"geoId/5508": [ "containedInPlace", "geoId", "geopythonCoordinates", "geoOverlaps", "kmlCoordinates", "landArea", "latitude", "longitude", "name", "provenance", "typeOf", "usCensusGeoId", "waterArea"]} -
{"data": {"geoId/5508": {"properties": [ "containedInPlace", "geoId", "geopythonCoordinates", "geoOverlaps", "kmlCoordinates", "landArea", "latitude", "longitude", "name", "provenance", "typeOf", "usCensusGeoId", "waterArea"]}}}
Example 9: Get the value(s) of a single outgoing property of a node (place)
This example retrieves the common names of the country of Côte d”Ivoire.
-
datacommons.get_property_values(["country/CIV"],"name") -
client.node.fetch_property_values(node_dcids="country/CIV", properties="name")
-
{"country/CIV": ["Côte d"Ivoire", "Ivory Coast"]} -
{"data": {"country/CIV": {"arcs": {"name": {"nodes": [ {"provenanceId": "dc/base/WikidataOtherIdGeos", "value": "Côte d"Ivoire"}, {"provenanceId": "dc/base/WikidataOtherIdGeos", "value": "Ivory Coast"}]}}}}}
Example 10: Retrieve the values of a single outgoing property for multiple nodes (places)
This example gets the the addresses of Stuyvesant High School in New York and Gunn High School in California.
-
datacommons.get_property_values(["nces/360007702877","nces/062961004587"],"address") -
client.node.fetch_property_values(node_dcids=["nces/360007702877","nces/062961004587"], properties="address")
-
{"nces/360007702877": ["345 Chambers St New York NY 10282-1099"], "nces/062961004587": ["780 Arastradero Rd. Palo Alto 94306-3827"]} -
{"data": {"nces/360007702877": {"arcs": {"address": {"nodes": [{"provenanceId": "dc/base/NCES_PublicSchool", "value": "345 Chambers St New York NY 10282-1099"}]}}}, "nces/062961004587": {"arcs": {"address": {"nodes": [{"provenanceId": "dc/base/NCES_PublicSchool", "value": "780 Arastradero Rd. Palo Alto 94306-3827"}]}}}}}
datacommons_pandas package examples
The following examples show equivalent API requests and responses using the V1 datacommons_pandas package and V2.
Example 1: Get all values of a single statistical variable for a single place
This example is the same as example 4 above, but returns a Pandas DataFrame object. Note that V1 selects a single facet, while V2 returns all facets. To restrict the V2 method to a single facet, you could use the property_filters parameter.
-
datacommons_pandas.build_time_series("geoId/05", "Count_Person_Male") -
client.observations_dataframe(variable_dcids="Count_Person_Male", date="all", entity_dcids="geoId/05")
-
0 2023 1495958 2012 1431252 2022 1491622 2018 1468412 2014 1447235 2020 1478511 2011 1421287 2016 1456694 2017 1461651 2015 1451913 2019 1471760 2021 1483520 2013 1439862 dtype: int64 -
date entity entity_name variable variable_name facetId importName measurementMethod observationPeriod provenanceUrl unit value 0 2011 geoId/05 Arkansas Count_Person_Male Male population 1145703171 CensusACS5YearSurvey CensusACS5yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1421287.0 1 2012 geoId/05 Arkansas Count_Person_Male Male population 1145703171 CensusACS5YearSurvey CensusACS5yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1431252.0 2 2013 geoId/05 Arkansas Count_Person_Male Male population 1145703171 CensusACS5YearSurvey CensusACS5yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1439862.0 3 2014 geoId/05 Arkansas Count_Person_Male Male population 1145703171 CensusACS5YearSurvey CensusACS5yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1447235.0 4 2015 geoId/05 Arkansas Count_Person_Male Male population 1145703171 CensusACS5YearSurvey CensusACS5yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1451913.0 ... ... ... ... ... ... ... ... ... ... ... ... ... 162 2015 geoId/05 Arkansas Count_Person_Male Male population 1226172227 CensusACS1YearSurvey CensusACS1yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1463576.0 163 2016 geoId/05 Arkansas Count_Person_Male Male population 1226172227 CensusACS1YearSurvey CensusACS1yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1468782.0 164 2017 geoId/05 Arkansas Count_Person_Male Male population 1226172227 CensusACS1YearSurvey CensusACS1yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1479682.0 165 2018 geoId/05 Arkansas Count_Person_Male Male population 1226172227 CensusACS1YearSurvey CensusACS1yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1476680.0 166 2019 geoId/05 Arkansas Count_Person_Male Male population 1226172227 CensusACS1YearSurvey CensusACS1yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1474705.0 167 rows × 12 columns
Example 2: Get the all values of a single statistical variable for a single place, selecting the facet to return
This example is the same as example 5 above, but returns a Pandas DataFrame object.
-
datacommons_pandas.build_time_series("country/ITA", "Amount_EconomicActivity_GrossDomesticProduction_Nominal", unit="USDollar") -
client.observations_dataframe(variable_dcids="Amount_EconomicActivity_GrossDomesticProduction_Nominal", date="all", entity_dcids="country/ITA", property_filters={"unit": ["USDollar"]})
-
0 1988 8.936639e+11 1990 1.183945e+12 1970 1.136567e+11 1966 7.662244e+10 1992 1.323204e+12 ... ... 2007 2.222524e+12 2022 2.104068e+12 2021 2.179208e+12 1977 2.581900e+11 2020 1.907481e+12 65 rows × 1 columns dtype: float64 -
date entity entity_name variable variable_name facetId importName measurementMethod observationPeriod provenanceUrl unit value 0 1960 country/ITA Italy Amount_EconomicActivity_GrossDomesticProductio... Nominal gross domestic product 3496587042 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... USDollar 4.201242e+10 1 1961 country/ITA Italy Amount_EconomicActivity_GrossDomesticProductio... Nominal gross domestic product 3496587042 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... USDollar 4.664949e+10 2 1962 country/ITA Italy Amount_EconomicActivity_GrossDomesticProductio... Nominal gross domestic product 3496587042 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... USDollar 5.241387e+10 3 1963 country/ITA Italy Amount_EconomicActivity_GrossDomesticProductio... Nominal gross domestic product 3496587042 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... USDollar 6.003592e+10 4 1964 country/ITA Italy Amount_EconomicActivity_GrossDomesticProductio... Nominal gross domestic product 3496587042 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... USDollar 6.572077e+10 ... ... ... ... ... ... ... ... ... ... ... ... ... 60 2020 country/ITA Italy Amount_EconomicActivity_GrossDomesticProductio... Nominal gross domestic product 3496587042 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... USDollar 1.907481e+12 61 2021 country/ITA Italy Amount_EconomicActivity_GrossDomesticProductio... Nominal gross domestic product 3496587042 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... USDollar 2.179208e+12 62 2022 country/ITA Italy Amount_EconomicActivity_GrossDomesticProductio... Nominal gross domestic product 3496587042 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... USDollar 2.104068e+12 63 2023 country/ITA Italy Amount_EconomicActivity_GrossDomesticProductio... Nominal gross domestic product 3496587042 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... USDollar 2.304605e+12 64 2024 country/ITA Italy Amount_EconomicActivity_GrossDomesticProductio... Nominal gross domestic product 3496587042 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... USDollar 2.372775e+12 65 rows × 12 columns
Example 3: Get all values of a single statistical variable for multiple places
This example compares the historic populations of Sudan and South Sudan. Note that V1 selects a single facet, while V2 returns all facets. To restrict the V2 method to a single facet, you could use the property_filters parameter.
-
datacommons_pandas.build_time_series_dataframe(["country/SSD","country/SDN"], "Count_Person") -
client.observations_dataframe(variable_dcids="Count_Person", date="all", entity_dcids=["country/SSD", "country/SDN"])
-
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 ... 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 place country/SDN 8364489 8634941 8919028 9218077 9531109 9858030 10197578 10550597 10917999 11298936 ... 40024431 41259892 42714306 44230596 45548175 46789231 48066924 49383346 50042791 50448963 country/SSD 2931559 2976724 3024308 3072669 3129918 3189835 3236423 3277648 3321528 3365533 ... 11107561 10830102 10259154 10122977 10423384 10698467 10865780 11021177 11483374 11943408 2 rows × 65 columns -
date entity entity_name variable variable_name facetId importName measurementMethod observationPeriod provenanceUrl unit value 0 1960 country/SDN Sudan Count_Person Total population 3981252704 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... None 8364489.0 1 1961 country/SDN Sudan Count_Person Total population 3981252704 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... None 8634941.0 2 1962 country/SDN Sudan Count_Person Total population 3981252704 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... None 8919028.0 3 1963 country/SDN Sudan Count_Person Total population 3981252704 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... None 9218077.0 4 1964 country/SDN Sudan Count_Person Total population 3981252704 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... None 9531109.0 ... ... ... ... ... ... ... ... ... ... ... ... ... 167 2016 country/SSD South Sudan Count_Person Total population 473499523 Subnational_Demographics_Stats WorldBankSubnationalPopulationEstimate P1Y https://databank.worldbank.org/source/subnatio... None 12231000.0 168 2024 country/SSD South Sudan Count_Person Total population 1456184638 WikipediaStatsData Wikipedia None https://www.wikipedia.org None 12703714.0 169 2008 country/SSD South Sudan Count_Person Total population 2458695583 WikidataPopulation WikidataPopulation None https://www.wikidata.org/wiki/Wikidata:Main_Page None 8260490.0 170 2015 country/SSD South Sudan Count_Person Total population 2458695583 WikidataPopulation WikidataPopulation None https://www.wikidata.org/wiki/Wikidata:Main_Page None 12340000.0 171 2017 country/SSD South Sudan Count_Person Total population 2458695583 WikidataPopulation WikidataPopulation None https://www.wikidata.org/wiki/Wikidata:Main_Page None 12575714.0 172 rows × 12 columns
Example 4: Get all values of multiple statistical variables for multiple places
This example compares the current populations, median ages, and unemployment rates of the US, California, and Santa Clara County. To restrict the V2 method to a single facet, you could use the property_filters parameter.
-
datacommons_pandas.build_multivariate_dataframe(["country/USA", "geoId/06", "geoId/06085"],["Count_Person", "Median_Age_Person", "UnemploymentRate_Person"]) -
client.observations_dataframe(variable_dcids=["Count_Person", "Median_Age_Person", "UnemploymentRate_Person"], date="latest", entity_dcids=["country/USA", "geoId/06", "geoId/06085"])
-
Median_Age_Person Count_Person UnemploymentRate_Person place country/USA 38.7 332387540 4.3 geoId/06 37.6 39242785 5.5 geoId/06085 37.9 1903297 NaN -
date entity entity_name variable variable_name facetId importName measurementMethod observationPeriod provenanceUrl unit value 0 2024 geoId/06085 Santa Clara County Count_Person Total population 2176550201 USCensusPEP_Annual_Population CensusPEPSurvey P1Y https://www.census.gov/programs-surveys/popest... None 1926325.0 1 2023 geoId/06085 Santa Clara County Count_Person Total population 1145703171 CensusACS5YearSurvey CensusACS5yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1903297.0 2 2020 geoId/06085 Santa Clara County Count_Person Total population 1541763368 USDecennialCensus_RedistrictingRelease USDecennialCensus None https://www.census.gov/programs-surveys/decenn... None 1936259.0 3 2024 geoId/06085 Santa Clara County Count_Person Total population 2390551605 USCensusPEP_AgeSexRaceHispanicOrigin CensusPEPSurvey_Race2000Onwards P1Y https://www2.census.gov/programs-surveys/popes... None 1926325.0 4 2023 geoId/06085 Santa Clara County Count_Person Total population 1964317807 CensusACS5YearSurvey_SubjectTables_S0101 CensusACS5yrSurveySubjectTable None https://data.census.gov/table?q=S0101:+Age+and... None 1903297.0 5 2022 geoId/06085 Santa Clara County Count_Person Total population 2564251937 CDC_Social_Vulnerability_Index None None https://www.atsdr.cdc.gov/place-health/php/svi... None 1916831.0 6 2020 geoId/06085 Santa Clara County Count_Person Total population 2825511676 CDC_Mortality_UnderlyingCause None None https://wonder.cdc.gov/ucd-icd10.html None 1907105.0 7 2019 geoId/06085 Santa Clara County Count_Person Total population 2517965213 CensusPEP CensusPEPSurvey None https://www.census.gov/programs-surveys/popest... None 1927852.0 8 2019 geoId/06085 Santa Clara County Count_Person Total population 1226172227 CensusACS1YearSurvey CensusACS1yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 1927852.0 9 2024 country/USA United States of America Count_Person Total population 2176550201 USCensusPEP_Annual_Population CensusPEPSurvey P1Y https://www.census.gov/programs-surveys/popest... None 340110988.0 10 2023 country/USA United States of America Count_Person Total population 2645850372 CensusACS5YearSurvey_AggCountry CensusACS5yrSurvey None https://www.census.gov/ None 335642425.0 11 2023 country/USA United States of America Count_Person Total population 1145703171 CensusACS5YearSurvey CensusACS5yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 332387540.0 12 2020 country/USA United States of America Count_Person Total population 1541763368 USDecennialCensus_RedistrictingRelease USDecennialCensus None https://www.census.gov/programs-surveys/decenn... None 331449281.0 13 2024 country/USA United States of America Count_Person Total population 3981252704 WorldDevelopmentIndicators None P1Y https://datacatalog.worldbank.org/dataset/worl... None 340110988.0 14 2024 country/USA United States of America Count_Person Total population 2390551605 USCensusPEP_AgeSexRaceHispanicOrigin CensusPEPSurvey_Race2000Onwards P1Y https://www2.census.gov/programs-surveys/popes... None 340110988.0 15 2023 country/USA United States of America Count_Person Total population 4181918134 OECDRegionalDemography_Population OECDRegionalStatistics P1Y https://data-explorer.oecd.org/vis?fs[0]=Topic... None 334914895.0 16 2023 country/USA United States of America Count_Person Total population 1964317807 CensusACS5YearSurvey_SubjectTables_S0101 CensusACS5yrSurveySubjectTable None https://data.census.gov/table?q=S0101:+Age+and... None 332387540.0 17 2023 country/USA United States of America Count_Person Total population 10983471 CensusACS5YearSurvey_SubjectTables_S2601A CensusACS5yrSurveySubjectTable None https://data.census.gov/cedsci/table?q=S2601A&... None 332387540.0 18 2023 country/USA United States of America Count_Person Total population 196790193 CensusACS5YearSurvey_SubjectTables_S2602 CensusACS5yrSurveySubjectTable None https://data.census.gov/cedsci/table?q=S2602&t... None 332387540.0 19 2023 country/USA United States of America Count_Person Total population 217147238 CensusACS5YearSurvey_SubjectTables_S2603 CensusACS5yrSurveySubjectTable None https://data.census.gov/cedsci/table?q=S2603&t... None 332387540.0 20 2020 country/USA United States of America Count_Person Total population 2825511676 CDC_Mortality_UnderlyingCause None None https://wonder.cdc.gov/ucd-icd10.html None 329484123.0 21 2019 country/USA United States of America Count_Person Total population 2517965213 CensusPEP CensusPEPSurvey None https://www.census.gov/programs-surveys/popest... None 328239523.0 22 2019 country/USA United States of America Count_Person Total population 1226172227 CensusACS1YearSurvey CensusACS1yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 328239523.0 23 2024 geoId/06 California Count_Person Total population 2176550201 USCensusPEP_Annual_Population CensusPEPSurvey P1Y https://www.census.gov/programs-surveys/popest... None 39431263.0 24 2023 geoId/06 California Count_Person Total population 1145703171 CensusACS5YearSurvey CensusACS5yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 39242785.0 25 2020 geoId/06 California Count_Person Total population 1541763368 USDecennialCensus_RedistrictingRelease USDecennialCensus None https://www.census.gov/programs-surveys/decenn... None 39538223.0 26 2023 geoId/06 California Count_Person Total population 4181918134 OECDRegionalDemography_Population OECDRegionalStatistics P1Y https://data-explorer.oecd.org/vis?fs[0]=Topic... None 38965193.0 27 2023 geoId/06 California Count_Person Total population 1964317807 CensusACS5YearSurvey_SubjectTables_S0101 CensusACS5yrSurveySubjectTable None https://data.census.gov/table?q=S0101:+Age+and... None 39242785.0 28 2023 geoId/06 California Count_Person Total population 10983471 CensusACS5YearSurvey_SubjectTables_S2601A CensusACS5yrSurveySubjectTable None https://data.census.gov/cedsci/table?q=S2601A&... None 39242785.0 29 2023 geoId/06 California Count_Person Total population 196790193 CensusACS5YearSurvey_SubjectTables_S2602 CensusACS5yrSurveySubjectTable None https://data.census.gov/cedsci/table?q=S2602&t... None 39242785.0 30 2020 geoId/06 California Count_Person Total population 2825511676 CDC_Mortality_UnderlyingCause None None https://wonder.cdc.gov/ucd-icd10.html None 39368078.0 31 2019 geoId/06 California Count_Person Total population 2517965213 CensusPEP CensusPEPSurvey None https://www.census.gov/programs-surveys/popest... None 39512223.0 32 2019 geoId/06 California Count_Person Total population 1226172227 CensusACS1YearSurvey CensusACS1yrSurvey None https://www.census.gov/programs-surveys/acs/da... None 39512223.0 33 2023 geoId/06085 Santa Clara County Median_Age_Person Median age of population 3795540742 CensusACS5YearSurvey CensusACS5yrSurvey None https://www.census.gov/programs-surveys/acs/da... Year 37.9 34 2023 geoId/06085 Santa Clara County Median_Age_Person Median age of population 815809675 CensusACS5YearSurvey_SubjectTables_S0101 CensusACS5yrSurveySubjectTable None https://data.census.gov/table?q=S0101:+Age+and... Years 37.9 35 2023 country/USA United States of America Median_Age_Person Median age of population 3795540742 CensusACS5YearSurvey CensusACS5yrSurvey None https://www.census.gov/programs-surveys/acs/da... Year 38.7 36 2023 country/USA United States of America Median_Age_Person Median age of population 815809675 CensusACS5YearSurvey_SubjectTables_S0101 CensusACS5yrSurveySubjectTable None https://data.census.gov/table?q=S0101:+Age+and... Years 38.7 37 2023 country/USA United States of America Median_Age_Person Median age of population 2763329611 CensusACS5YearSurvey_SubjectTables_S2601A CensusACS5yrSurveySubjectTable None https://data.census.gov/cedsci/table?q=S2601A&... Years 38.7 38 2023 country/USA United States of America Median_Age_Person Median age of population 3690003977 CensusACS5YearSurvey_SubjectTables_S2602 CensusACS5yrSurveySubjectTable None https://data.census.gov/cedsci/table?q=S2602&t... Years 38.7 39 2023 country/USA United States of America Median_Age_Person Median age of population 4219092424 CensusACS5YearSurvey_SubjectTables_S2603 CensusACS5yrSurveySubjectTable None https://data.census.gov/cedsci/table?q=S2603&t... Years 38.7 40 2023 geoId/06 California Median_Age_Person Median age of population 3795540742 CensusACS5YearSurvey CensusACS5yrSurvey None https://www.census.gov/programs-surveys/acs/da... Year 37.6 41 2023 geoId/06 California Median_Age_Person Median age of population 815809675 CensusACS5YearSurvey_SubjectTables_S0101 CensusACS5yrSurveySubjectTable None https://data.census.gov/table?q=S0101:+Age+and... Years 37.6 42 2023 geoId/06 California Median_Age_Person Median age of population 2763329611 CensusACS5YearSurvey_SubjectTables_S2601A CensusACS5yrSurveySubjectTable None https://data.census.gov/cedsci/table?q=S2601A&... Years 37.6 43 2023 geoId/06 California Median_Age_Person Median age of population 3690003977 CensusACS5YearSurvey_SubjectTables_S2602 CensusACS5yrSurveySubjectTable None https://data.census.gov/cedsci/table?q=S2602&t... Years 37.6 44 2025-08 country/USA United States of America UnemploymentRate_Person Unemployment rate 3707913853 BLS_CPS BLSSeasonallyAdjusted P1M https://www.bls.gov/cps/ None 4.3 45 2025-06 country/USA United States of America UnemploymentRate_Person Unemployment rate 1714978719 BLS_CPS BLSSeasonallyAdjusted P3M https://www.bls.gov/cps/ None 4.2 46 2025-08 geoId/06 California UnemploymentRate_Person Unemployment rate 324358135 BLS_LAUS BLSSeasonallyUnadjusted P1M https://www.bls.gov/lau/ None 5.8 47 2024 geoId/06 California UnemploymentRate_Person Unemployment rate 2978659163 BLS_LAUS BLSSeasonallyUnadjusted P1Y https://www.bls.gov/lau/ None 5.3 48 2025-08 geoId/06 California UnemploymentRate_Person Unemployment rate 1249140336 BLS_LAUS BLSSeasonallyAdjusted P1M https://www.bls.gov/lau/ None 5.5 49 2025-08 geoId/06085 Santa Clara County UnemploymentRate_Person Unemployment rate 324358135 BLS_LAUS BLSSeasonallyUnadjusted P1M https://www.bls.gov/lau/ None 4.6 50 2024 geoId/06085 Santa Clara County UnemploymentRate_Person Unemployment rate 2978659163 BLS_LAUS BLSSeasonallyUnadjusted P1Y https://www.bls.gov/lau/ None 4.1 51 2022 geoId/06085 Santa Clara County UnemploymentRate_Person Unemployment rate 2564251937 CDC_Social_Vulnerability_Index None None https://www.atsdr.cdc.gov/place-health/php/svi... None 4.4
Page last updated: November 25, 2025 • Send feedback about this page