Retrieve a collection of statistical data for multiple places
Returns a nested dict
of all time series for places
and stat_vars
.
Note that in Data Commons, a StatisticalVariable
is any type of statistical metric that can be measured at a place and
time. See the full list of StatisticalVariables.
General information about this method
Signature:
datacommons.get_stat_all(places, stat_vars)
Required arguments
places
: TheDCID
IDs of thePlace
objects to query for. (Here DCID stands for Data Commons ID, the unique identifier assigned to all entities in Data Commons.)stat_vars
: Thedcids
of theStatisticalVariables
.
Assembling the information you will need for a call to the get_stat_all method
Going into more detail on how to assemble the values for the required arguments:
place
: For this parameter, you will need to specify the DCID (the unique ID assigned by Data Commons to each node in the graph) of the place you are interested in.stat_var
: The statistical variable whose value you are interested in.
NOTE: Be sure to initialize the library. Check the Python library setup guide for more details.
What to expect in the function return
The method’s return value will always be an object in the following form:
{
"<dcid>": {
"stat_var": {
"sourceSeries": [
{
"val": {
<"time series">
}
"measurementMethod": "<String>",
"observationPeriod": "<String>",
"importName": "<String>",
"provenanceDomain": "<String>"
}
...
]
}
...
}
...
}
For more information on the key terms in this sample response, see the glossary.
Examples
Example 1: Retrieve the total population as well as the male population of Arkansas.
>>> import datacommons as dc
>>> dc.get_stat_all(["geoId/05"], ["Count_Person", "Count_Person_Male"])
{
'geoId/05': {
'Count_Person_Female': {
'sourceSeries': [
{
'val': {
'2001': 1376360
'2002': 1382090,
...
'2017': 1521170,
'2018': 1527580,
},
'measurementMethod': 'OECDRegionalStatistics',
'observationPeriod': 'P1Y',
'importName': 'OECDRegionalDemography',
'provenanceDomain': 'oecd.org'
},
{
'val': {
'2011': 1474641,
'2012': 1485120
...
'2017': 1516293,
'2018': 1522259,
},
'measurementMethod': 'CensusACS5yrSurvey',
'importName': 'CensusACS5YearSurvey',
'provenanceDomain': 'census.gov'
}
]
},
'Count_Person_Male': {
'sourceSeries': [
{
'val': {
'2001': 1315210,
'2002': 1323840,
...
'2017': 1475420,
'2018': 1480140,
},
'measurementMethod': 'OECDRegionalStatistics',
'observationPeriod': 'P1Y',
'importName': 'OECDRegionalDemography',
'provenanceDomain': 'oecd.org'
},
{
'val': {
'2011': 1421287
'2012': 1431252,
...
'2017': 1461651,
'2018': 1468412,
},
'measurementMethod': 'CensusACS5yrSurvey',
'importName': 'CensusACS5YearSurvey',
'provenanceDomain': 'census.gov'
}
]
}
}
}
Example 2: Retrieve the populations of people with doctoral degrees in Minnesota and Wisconsin.
>>> datacommons.get_stat_all(["geoId/27","geoId/55"], ["Count_Person_EducationalAttainmentDoctorateDegree"])
{'geoId/27': {'Count_Person_EducationalAttainmentDoctorateDegree': {'sourceSeries': [{'val': {'2016': 50039, '2017': 52737, '2018': 54303, '2012': 40961, '2013': 42511, '2014': 44713, '2015': 47323}, 'measurementMethod': 'CensusACS5yrSurvey', 'importName': 'CensusACS5YearSurvey', 'provenanceDomain': 'census.gov', 'provenanceUrl': 'https://www.census.gov/'}]}}, 'geoId/55': {'Count_Person_EducationalAttainmentDoctorateDegree': {'sourceSeries': [{'val': {'2017': 43737, '2018': 46071, '2012': 38052, '2013': 38711, '2014': 40133, '2015': 41387, '2016': 42590}, 'measurementMethod': 'CensusACS5yrSurvey', 'importName': 'CensusACS5YearSurvey', 'provenanceDomain': 'census.gov', 'provenanceUrl': 'https://www.census.gov/'}]}}}
Error returns
When no data is found, the API returns a dictionary with no values:
>>> import datacommons as dc
>>> dc.get_stat_all(["bad value"],["another bad value"])
{'bad value': {'another bad value': {}}}
Page last updated: January 16, 2025 • Send feedback about this page